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Chapter 1

Introduction

Computer systems are growing in complexity and sophistication as multiprocessors and distributed com-

puters are coming into widespread use to achieve highcr performance and reliability. This growth is being

assisted by the availability of successively more complex building blocks. This trend has increased the im-

portance of fault tolerance and system reliability as design parameters. Thus the computation of system

reliability measures has become one of the system design tasks. Several efforts have been reported in the

literature and are in progress to make the task of computing system reliability measures easier and more

efficient by providing designers with reliability evaluation tools.

The analysis and evaluation of system reliability for complex computer systems is very tedious and prone

to error even for experienced reliability analysts. With the exc0ption of the ADVISER I)rogram, discussed

in Section 1.2, existiug software tools usually assume an understanding of reliability analysis techniques

and therefore are more in the nature of computational aids once the preliminary system decomposition

and analysis has been manually achieved. Although ADVISER does not make this assumption it. uses

combinatorial techniques and is therefore limited in the complexity of systems and fault types it can analyze.

More advanced techniques are required to analyze computer architectures that use standby redundancy,

can be repaired, and are susceptible to transient or intermittent faults. One possibility is the Markov model,

discussed in Section 1.1. The advantages offered by Markov models are that they are in widespread use

among reliability analysts and several programs, discussed in Section 1.2, have been developed to solve



them.However,Markovmodelscannotbeusedto analyzenonexponentiallydistributedconcurrent events.

For example, a fault I.h_t arrives while f.hc syst,'m is n'c_mliguring ils,'lf around a pn'vious fault wonld be

represented by a transition to a state where two faults are present. This new state would not. take into

account the time the system already spent reconfiguring from the first fault.

Another possibility is the extended stochastic Petri net (ESPN) described in [DTGN84]. The advantages

offered by the ESPN is that it can analyze concurrent events and model systems at a lower level of detail than

Markov models. The ESPN "tokens" can be simultaneously enabled to move concurrently at independent

transition times. The low level modeling capability is due l.o mechanisms such as queues and counters that

can simulate the algorithm of the process being modeled. To solve an ESPN analytically or numerically it

must be converted to a Markov model. This conversion is not possible if tokens are moving concurrently

at independent transition times that are not exponentially distributed, because this makes the process non-

Markovian (i.e., the transition probabilities depend on past. states). In general an ESPN must be solved by

simulation.

Simulations can include any level of detail, and are thus flexible, but many repetitions of the simulation

are needed to ensure accuracy. For example, in life critical applications that require a probability of failure

of 10 -9 with a relative error no more than 10% within a confidence interval of 95%, approximately 3.8 × 1011

simulation repetitions are necessary [LS86]. In general those applications require a Markov model because

it can be solved analytically or numerically.

The purpose of this paper is to present a general graphical user interface (GUI) for automatic reliability

modeling of processor-memory-switch (PMS) structures using a Markov model so that it can be used for

life critical applications. This GUI is based on a hierarchy of windows iml)lemeilted in C using the TAE

Plus user interface development tool for building X window-based applications [Szc90]. One window has

graphical editing capabilities for specifying the system's communication structure, hierarchy, reconfiguration

capabilities, and requirements. This window is implemeuted using the schematic drawing editor Schem

[Vii90]. Other windows have text fields, pop-up menus, and buttons for specifying parameters and selecting

actions. The advantages of such an approach are (a) utility to a larger class of users, not necessarily expert

in reliability analysis, and (b) a lower probability of human error in the computation.



A brief background on reliability calculation at the PMS level using Markov models is presented in

Section 1.1. Previous work in the generation and evaluation of reliability models is surveyed in Section 1.2.

The proposed GUI is defined and illustrated in Chapter 2. An example application of the GUI is presented

in Chapter 3 using the Fault-Tolerant Multiprocessor (FTMP) described in [LS83]. Conclusions are drawn

in Chapter 4.

1.1 Background

Present day computer systems can be viewed at varying levels of detail, and therefore so can the process

of designing and analyzing them. Four levels were defined in [SBN82]. These range from the circuit level,

through the logic and programming levels, to the PMS level. The PMS level view of digital systems is one

where the primitives are processors, memories, switches, transducers, etc. as opposed to the logic level where

the primitives may be gates, registers, multiplexers, etc.

Hardware components are susceptible to hard and soft faults as discussed in [SS82]. A fault is an

incorrect state of hardware or software resulting from a physical change in the hardware, interference from

the environment, or design mistakes [Lap85]. Hard or permanent faults are continuous and stable, and result

from an irreversible physical change. Soft faults can be transient or intermittent. Transient faults result from

temporary environmental conditions. Intermittent faults are occasionally active due to unstable hardware,

or varying hardware or software states (e.g., as a function of load or activity). Depending on whether the

intermittent fault is benign or active the output of the component will be correct or not, respectively.

Fault-tolerant computer systems can be affected by a limited set of faults without interruptions in their

operation. Some computer systems achieve fault tolerance by using redundant groups of components to

perform the same operations. The system must determine which is the correct output using diagnostics

or majority voting. The various redundancy techniques are discussed in [SS82], the more relevant ones are

defined below.

Static redundancy. Faults are masked through a majority vote involving a fixed group of redundant

components. Thus, when the masking redundancy is exhausted by component failures, any further



faultswill causeerrorsat theoutput.Figure1.1illustratesa statically redundant processor triad.

Dynamic redundancy. Faults are not masked from causing errors at tile output, hut the faulty compo-

ncnts are detected, isolated, and reeonfigured out of lhe system. Tile f_iulty components are replaced

when spares are available. Figure 1.2 illustrates a dynamically redundant active processor with n

spares.

Hybrid redundancy. Faults are masked through a majority vote involving a group of redundant compo-

nents that is reconfigured when spares are available. Thus, wlmn the masking redundancy is exhausted

by component failures, any filrther faults that occur before a faulty component is replaced by a spare

will cause errors at the output. Figure 1.3 illustrates a hybridly redundant triad of active processors

with n spares.

Adaptive voting. Faults are masked through a majority vote involving a variable group of redundant

components without spares. Faulty components are reconfigured out of the system by excluding them

from the voting process. Thus, when the masking redtmdancy is exhausted by component failures,

any further faults that occur before a faulty component is reconfigured out of the voting process will

cause errors at the output. Figure 1.4 illustrates adaptive voting with n processors.

Adaptive hybrid. Faults are masked through a majorily vote involving a variable group of redundant

components which are replaced when spares are available. If spares are not available, faulty components

are reconfigured out of the system by excluding them from the voting process. Thus, when the

masking redundancy is exhausted by component failures, an)' further faults that occur before a faulty

component is replaced by a spare or reconfigured out of the voting process will cause errors at the

output. Figure 1.5 illustrates an adaptive hybrid n-tuple of active processors with m spares.

For example, if a triad (a group of 3 componeuts) that uses hyl)rid redundancy "recovers" from a fault

by replacing the faulty component with a spare, it can then tolerate a second fault. Recovery is the process

of detecting, isolating, and reconfiguring the faulty conlponeut OUl of the system. The fault, coverage of

a component is the probability that the system can survive a fault in this component and successfldly
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Figure 1.2: A dynamically redundant active processor with n spares.
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Figure 1.3: A hybridly redundant triad of active processors with n spares.
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Figure 1.4: Adaptive voting with n processors.

Figure t.5: An adaptive hybrid n-tul)le of active processors with rn spares.



recover)If the system can always recover it has a "perfect" coverage of one.

Spares are sometimes left unpowered until they become part of the active configuration to reduce their

failure rates [AGM+71]. They are sometimes said to be: cold if their failure rates are assumed to be zero,

warm if their failure rates are reduced but not zero, or hot if their failure rates are not reduced [BJ90].

Reliability measures are defined in terms of probabilities because the failure processes in hardware com-

ponents are nondeterministic. These various measures are discussed in [SS82], the more relevant ones are

defined below.

Reliability. The conditional probability, R(t), as a function of time t that the system has survived the

interval [0, t] given that it was operational at time zero. It is a nonincreasing function whose initial

value is one.

Mean Time To Failure (MTTF). The expected time of the first system failure assuming a new (perfect)

system at time zero.

Availability. The probability, A(t), as a function of time t that the system is operational at that instant

of time t.

If the limit of A(f) exists as f goes to infinity, it expresses the expected fraction of time that the system

is available to perform useful computations. Availability is typically used as a figure of merit in systems

in which service can be delayed or denied for short periods to perform preventive maintenance or repair

without serious consequences. The availability is important in the computation of system life-cycle costs.

Reliability is used to describe systems in which repair is typically infeasible such as aerospace applications.

The MTTF can be derived from R(t) as follows:

f0 °
MTTF = R(t) dt

The most commonly used reliability function for a single component is based on a Poisson process with

1 These are the definitions that will be used in this paper, but recovery mid coverage do not have universally accepted

definitions.
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anexponentialdistribution.Thisis calledtheexponentialreliabilityfunctionandhastheform:

R(O = e-_'

where ,_ is the hazard or failure rate. The failure rate is a constant which reflects the reliability of the

component and for highly reliable components is usually expressed in failures per million hours. The expo-

nential reliability function is used when the failure rate is time-independent, such as when components do

not age. It is often observed that, after a burn-in period, permanent faults in electronic components follow

a relatively constant failure rate. The MTTF for tile exponential reliability function has the form:

l
MTTF = -

A

Many other reliability functions have been formulated. The second most common reliability function is

based on the Weibull distribution. This is called the Weibull reliability function and has the form:

R(t) = e -(xO°

where _ is the scale parameter and a is the shape parameter (other reparameterized forms are also common).

It is equivalent to the exponential function when a is one. The Weibull reliability function is used when

the failure rate is time-dependent. Permanent faults for components that age can be described using an

increasing failure rate (c_ > 1) and in this case the system is not as good as new when repair takes place.

Data presented in [McC81, CMS82] indicates that transient faults follow a decreasing failure rate (a < 1).

The failure processes of different components will be assumed to be independent of each other. This

assumption is not strictly true, such as when electrical, mechanical, or thermal conditions in one component

affect other components in its proximity. However, it is close enough in practice to be used to simplify the

analysis.

The state of a system represents all that must be known to describe the system at any instant. As the

system changes, such as when components fail or are repaired, so does its state. These changes of state



are called state transitions. If all possible states are assumed to be known a discrete-state system model is

used; if this assumption is not made a continuous-state system model is used. If the state transition times

are assumed to be restricted to some multiple of a given time interval a discrete-time system model is used.

If it is assumed that state transitions can occur at any time a continuous-time system model is used. Most

systems can be classified according to their state space and time parameter as

a) discrete-state and discrete-time

b) discrete-state and continuous-time

c) continuous-state and discrete-time

d) continuous-state and continuous-time

For a discrete-state system a state transition diagram (STD) may be drawn. The transition diagram

is a directed graph. The nodes correspond to system states, and the directed arcs indicate allowable state

transitions. Each arc has a label that identifies tile distribution of the conditional probability that the

system will go from the originating node to the destination node of that directed arc given the previous

history of the system and that the system was initially at the originating node. The label used depends

on the distribution. For example, the label could be the hazard rate for the exponential distribution, the

scale and shape parameters for the Weibull distribution, or the mean and standard deviation for a general

distribution.

If transitions are allowed from failed states to operational states, then the STD is an Availability graph

and A(t) may be obtained from it. R(t) may be obtained by specifically disallowing failed to working state

transitions from the STD, thus making it a Reliability graph.

A Reliability graph of a triad is given in Figure 1.6. In this model it is a.ssumed that the components

have a perfect coverage of 1. The horizontal transitions represent fault arrivals. These follow an exponential

distribution, and consequently A represents the constant hazard rate. The coefficients of ), represent the

number of working processors that are being actively used in tile configuration. The vertical transition

represents recovery from a fault. These follow a general distributionl and consequently p and _r represent

its mean and standard deviation. There is a race between the two transitions leaving state 2. If the second
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Figure 1.6: Reliability graph of a triad.

fault wins the race, then system failure occurs. If the removal of the first fault wins the race, then the system

reconfigures into a simplex (i.e., only uses one of the two working components). Unless otherwise noted in

the state descriptions, all working processors are being actively used in the configuration.

The information conveyed by the STD is often summarized in a square matrix called the state transition

matrix (STM). The STM element in row i and column j is the label in the arc from state i to state j.

Tile terminology used in this paper to denote the various types of Markov models, and tile assumptions

they are based on are defined below. The hierarchy of Markov models is illustrated in Figure 1.7.

Markov model. A stochastic process model whose future state depends only upon the present state, and

not upon the history that led to its present state.

Homogeneous Markov model. A Markov model whose state transition probabilities are time-

independent. For the continuous-time homogeneous Markov model this implies that the state transi-

tion times follow an exponential distribution. This type of model is discussed in [Chu67, Rom70] and

applied to computer systems in [MA82].

l0
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homogeneous semi-(time-independent) 1 [ Q_o.cal time-dependent)I [ n°nh°m°gene°us(globaltime- dependent) ]1

Figure 1.7: lIierarchy of Marko,, models.

Semi-Markov model. A Markov model whose state transition probabilities depend upon the time spent

in the present state, called the local time. For the continuous-time semi-Markov model this implies

that the state transition times do not follow an exponential distribution, they might follow a Weibull

distribution or any other distribution. This type of model is discussed and applied to computer systems

in [WhiS4].

Nonhomogeneous Markov model. A Markov model whose state transition probabilities depend upon

the time since the system was first put into operation, called the global time. For the continuous-

time nonhomogeneous Markov model this implies that the state transition times do not follow an

exponential distribution. Often they are assumcd to follow a Weibull distribution, but they can follow

any other distribution. This type of model is discussed and applied to computer systems in [TGS1].

The probability of being in a particular state for a discrete-state, continuous-time Markov model can

be expressed with a differential equation. The set of simultaneous differential equations that describe these

models are called the continuous-time Chapman-Kolmogorov equations. For homogeneous Markov models

these equations can be solved using matrix or Laplace transformations.

If the state transition probabilities are time-dependent, it may be quite difficult to obtain explicit solu-

tions to the continuous-time Chapman-Kolmogorov equations. To obtain the exact probability of reaching

a state through a particular path of transitions requires the solution of a multiple integral, where each

intcgral represents the probability of making one of the transitions in the path. Often the integrals are ap-

proximated using numerical integration techniques [SBG79]. An alternative method is to approximate the

11



continuous-timemodelwithdiscrete-timeequivalents[SS82].Themajordifficultywith the second method is

that many transition rates that are effectively zero in the continuous-time model assume small, but nonzero,

probabilities in a discrete-time model.

1.2 Previous Work

There are several programs that use Markov models to evaluate the reliability and/or availability of systems

that use standby redundancy or can be repaired, and are susceptible to hard, transient, and intermittent

faults, such as CARE III, ARIES, SURE, PAWS, STEM, SURF, and IIARP. All of these programs can

evaluate reliability. ARIES, SURF, and HARP can also evaluate availability. Except for CARE III, they all

have as one of the system specification methods the state transition matrix.

CARE III (Computer-Aided Reliability Estimation), described in [BPR84], can evaluate the reliability

of systems that use reconfiguration to tolerate component faults, but do not repair the faulty components.

It uses a behavioral decomposition/aggregation solution technique described in [TG81]. This technique as-

sumes that the fault-occurrence behavior is composed of relatively infrequent events while the fault-handling

behavior is composed of relatively frequent events. The fault-handling behavior is separately analyzed us-

ing a fixed semi-Markov model that can use exponential and uniform distributions. The fault occurrence

behavior is analyzed using an aggregate nonhomogeneous Markov model that can use exponential and

Weibull distributions. The fault handling behavior is reflected by parameters in the aggregate nonhomo_

geneous Markov model. Numerical integration techniques are used to solve these Markov models. The

fault-occurrence behavior is specified using extended fault trees, which are automatically converted to the

nonhomogeneous Markov model. The fault-handling behavior is specified by providing the transition pa-

rameters of the fixed semi-Markov model. CARE III was developed at Raytheon under NASA's Langley

Research Center sponsorship. It is written in FORTRAN 77 and runs on Cyber and VAX/VMS computers.

ARIES (Automated _.Reliability Interactive Estimation .System), described in [MAG82], is restricted to

homogeneous Markov models. The system can be specified using a state transition matrix or as a series of

independent subsystems each containing identical modules that are either active or serve as spares. It uses a

matrix transformation solution technique that assumes distinct eigenvalues for the state transition matrix.

12



It wasdevelopedat UCLAandrunsonaVAX.

SURE(Semi-MarkovUnreliability Range _.Evaluator), described in [BW88], evaluates the unreliability

upper and lower bounds of semi-Markov models. It uses new mathematical theorems proven in [Whi84,

Lee85]. These theorems provide a means of bounding the probability of traversing a specific path in the

model within a specified time. By applying the theorems to every path of the model, the probability of

the system reaching any death state can be determined within usually very close bounds. These theorems

assume that slow (with respect to the mission time) exponential transitions describe tile occurrence of faults

and fast traasitions, that follow a general distribution specified by its mean and standard deviation, describe

the recovery process. It provides the option of pruning the model during its evaluation by conservatively

assuming system failure once the probability of reaching a state falls below a specified or automatically

selected prune level. Faults can be modeled as permanent, transient, or intermittent. Its only input method

is the state transition matrix. SURE was developed at NASA's Langley Research Center. It is written in

Pascal and runs on VAX/VMS and SUN computers.

The PAWS (Pad_ Approximation With Scaling) and STEM (Scaled Taylor Exponential Matrix) pro-

grams, described in [BS88], evaluate the unreliability of homogeneous Markov models. The input language

for these two programs is essentially tile same as for the SURE program. PAWS and STEM were developed

at NASA's Langley Research Center. They are written in Pascal and FORTRAN 77 and run on VAX/VMS

and SUN computers.

SURF, described in [LL78], can solve semi-Markov models that use exponential distributions or non-

exponential distributions that are related to the exponential (e.g., Gamma, Erlang, etc.). The method of

stages [CM65] is used to produce a homogeneous Markov model. Matrix transformations are used to obtain

time-independent values, such as MTTF and the limiting availability. The Laplace transform is used to

obtain time-dependent values, such as availability and reliability. SURF was developed in Toulouse, France.

Written in PL/I, it runs on an IBM System/370 at the IBM research facility in Yorktown Heights, New

York.

For HARP (ILvbrid Automated Reliability Predictor) described in [DTSG86, HBH90], the state tran-

sition probabilities can have exponential, uniform, Weibull, or general (a histogram must be provided)

13



distributions.If thestatetransition matrix is given by the user, tIARP can only evaluate the availability of

systems with constant repair rates. HARP has several additional methods of specifying the fault-occurrence

behavior (e.g., fault trees), all of which are automatically converted to a nonhomogeneous Markov model.

The fault-handling behavior can also be specified by providing the transition parameters of one of sev-

eral models. It uses the same behavioral decomposition/aggregation solution technique as CARE III, but

the various models are solved in a hybrid fashion. Markov models are solved using numerical integration

techniques, and extended stochastic Petri nets are solved by simulation. HARP was developed at Duke

University and Clemson University under NASA's Langley Research Center sponsorship. It is written in

FORTRAN 77 and C, and runs on the following computers: VAX/VMS, SUN, and IBM compatible PCs.

An abstract specification language for Markov reliability models was described in [But85]. The language

has statements to specify: (a) the state space, by defining the state variables and their range; (b) the start

state, by the initial values of the state variables; (c) the death states, by a Boolean expression of the state

variables; and (d) the state transitions, by a set of if-then rules that define, in terms of the state variables,

the possible transitions, their rates, and their destination states. This language has been implemented in

the ASSIST (Abstract Semi-Markov_Specification Interface to the SURE Tool) program to generate Markov

reliability models in the SURE input language [Joh86]. This implementation provides three optional state

space reduction techniques. First is pruning the model during its generation by conservatively assuming

system failure once a state satisfies a prune condition specified as a Boolean expression of the slate variables

[Joh88]. Second is trimming the model by conservatively altering states with outgoing recovery transitions

[WP90]. Their outgoing failure transitions that do not go to death states are changed to go to a single

trim state. The third technique combines pruning and trimming by changing all states that meet a prune

condition to trim states. Each trim state has a single transition to a death state at some trim rate. The trim

rate must be the sum of the failure rates of all remaining components. ASSIST was developed at NASA's

Langley Research Center. It is written in Pascal and runs on VAX/VMS and SUN computers.

ADVISER (Advanced Interactive Symbolic__Evaluator of Reliability), described in [KS82], automatically

generates symbolic reliability fimctions for PMS structures. Its assumptions are: (a) all faults are permanent

and stochastically independefit, (b) the PMS system has a perfect coverage, and (c) failed components are

14



Program Name Primary Inputs Primary Outputs

CARE III fault tree and reliability estimate
semi-Markov model parameters

ARIES homogeneous Markov model reliabiiity or
availability estimate

SURE semi-Markov model reliability bounds
PAWS/STEM homogeneous Markov model reliability estimate
HARP fault tree or reliability or

nonhomogeneous Markov model availability estimate
ASSIST semi-Markov model specification semi-Markov model
ADVISER PMS structure symbolic reliability function

Table 1.1: Summary of previous work.

not repaired and returned to a nonfaulty state. Its primary input is the interconnection graph of the PMS

structure. Other program inputs describe the components of the PMS structure by their types, reliability

functions, internal port connections, and ability to communicate with components of the same type. The

program also takes as input the requirements for the system and its subsystems or clusters, in the form

of modified Boolean expressions. ADVISER was developed at CMU. It is written in BLISS and runs on a

PDP-10.

A summary of the programs described in this section is presented in Table 1.1 in terms of their primary

inputs and outputs. None of these programs is able to generate a Markov model or its specification from

the PMS structure.

15



Chapter 2

Graphical User Interface

This GUI is to become the first of four steps in an automated reliability modeling process using a Markov

model. The second step will be automating the specification of the model in the ASSIST language. We

are implementing this second step in a program named ARM (Automated Reliability Modeling). The last

two steps, automating the generation and evaluation of the model, have already been implemented in the

ASSIST and SURE programs.

In order of importance, the major goals of the GUI are defined below.

General. New fault-tolerant techniques and system designs can be accommodated.

Hierarchical. Systems and subsystems can be defined in terms of their subsystems and components, re-

spectively.

Compact. Subsystem classes need only be defined with their component types as formal parameters once.

Subsystems are in the same class if they have the same hierarchy and requirements (e.g., triads which

require two of their three components). Subsystems are of the same type if they are in the same class, are

composed of the same component types, and have ttle same recovery parameters, if any (e.g., processor

triads). Components are of the same type if they have the same function and parameters (e.g., proces-

sors). These categories of subsystems and components arc summarized and ranked relative to each other in

Table 2.1. For the sake of generality, the GUI does not predefine any category.

16



Category Common Attributes Rank

subsystem class hierarchy {[+++][+++][+++]}

requirements

subsystem type component types [+++]

recovery parameters

component type function -l-

parameters

Table 2.1: Categories of subsystems and components.

Major GUI Input Category Source

requirements application

architecture design

parameters implementation technology

Table 2.2: Sources of major GUI input categories.

Each category is represented by an identifier that starts with a letter and can contain letters, underscores

(_), and numbers (e.g., a processor could be represented by p). This identifier can be preceded by an

integer greater than one to represent multiple elements of the same category (e.g., two proce_ors could

be represented by 2p). A subsystem identifier can also end with a set of parentheses that enclose a list of

parameters separated by commas [e.g., T(p)]. Formal parameters, identifiers which are not used to represent

anything else, are used in the identifier of a subsystem class. Component types are used instead of the formal

parameters in the identifier of a subsystem type.

The system's description is divided into requirements, architecture, and parameters. The requirements

depend on the application of the system. How the system was designed determines the architecture. The

technology used to implement the system components determines the parameter values (e.g., failure rates).

Tile sources of the major GUI input categories are summarized in Table 2.2. Figure 2.1 shows the hierarchy

of the system description.

The GUI starts by displaying the main window shown in Figure 2.2. It contains: text fields for entering

the system name and the name of the current selection; the graphs, parameters, and model pull-down menus;

and a button to quit the GUI. The current selection is the initial name used by windows that describe a

component type, subsystem type, or reconfiguration. It changes automatically to the last name entered in

the first text field of any such window, but can also be changed manually.

The graphs menu, shown in Figure 2.3, displays a window for editing the graphs described in Section 2.1.
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Figure 2.1: System description hierarchy.
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Figure 2.2: Main window.

18



External Structure
_terna_ Structure

Physical I_erarc_
Logical Hierarchy
Reconfiguration
Requirement

Figure 2.3: Graphs menu.

Failure

Spare

nepair
Recovery

Rec_figurati_

Model 8e_erati_

_odel Evaluation

Figure 2.4: Parameters menu.

The parameters menu, shown in Figure 2.4, displays windows, with text fields and buttons for parameter

specification, which are described in Section 2.2. The model menu, shown in Figure 2.5, executes the

programs that will specify, generate, and evaluate the Markov model, based on the system description given

through the GUI. ARM will notify the user if the system description is incomplete (e.g., if some parameters

have not been specified).

2.1 Graphs

The following subsections describe the graphs used for specifying the system's communication structure,

hierarchy, reconfiguration capabilities, and requirements.

]Specify

Generate

......

Figure 2.5: Model menu.

19



2.1.1 Structure

Graphs with unidirectional and bidirectional edges describe the system's communication structure. It. is

assumed that critical components, those required for the system to be operational, must bc able to com-

municate. The main purpose of the communication structure description is to analyze which component

failures will prevent communication between critical components and therefore cause system failure. This

structure is divided into external and internal.

2.1.1.1 External

A system's external structure is defined as the communication interconnection of all of its components. In the

external structure graph, the nodes represent one or more components of the same type. An unidirectional

edge between two nodes indicates that all the components of the source node can communicate with all the

components of the target node. A bidirectional edge between two nodes indicates that all the components

of one node can communicate with all the components of tile other node, and vice versa.

A plus sign (+) at the end of a component type identifier indicates that this is a self-talking component.

The majority of components of like type are passive and do not need to communicate. Examples of passive

components are memories, buses, and input/output transducers. Self-talking components need to exchange

information amongst each other. Examples of self-talking components are processors, direct-memory-access

device controllers, and other "smart" controllers. If not specified, the default is for components to be passive

and not communicate with their own type. This information is needed to prevent ARM from requiring

communication paths between components of the same type that never exchange information. Not taking

this behavior into account would lead to a pessimistic evaluation of the system reliability.

An asterisk (*) at the end of a component type identifier indicates that every communication port of

this component is internally connected bidirectionally to all other ports of the component. Most buses have

this internal structure. If not indicated in this way or as described in Subsubsection 2.1.1.2, the default is

for every port of a component to be disconnected from the other ports of the component.

The graph in Figure 2.6 describes the external structure of a multiprocessor composed of six processors

(p), six memories (m), six watchdog timers (w), four transmit buses (tb), four receive buses (rb), and four
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6p+ _c

6m

Figure 2.6: External structure of a multiprocessor.

watchdog buses (wb). The processors and watchdog timers need to communicate with components of their

own type. The processors communicate through the memory as described in Subsubsection 2.1.1.2. The

watchdog timers communicate through the watchdog bus. All of the buses have the typical internal structure

described above. This multiprocessor will be used as a running example throughout this chapter.

2.1.1.2 Internal

A component's internal structure is defined as the communication interconnection of its ports. This iuterual

structure of one or more components can be described by a graph inside of a component with its external

port connections labeled on the outside of tile component. The absence of an edge between two ports

indicates that they can not communicate through this component.

The internal structure of the six memories is described by the graph in Figure 2.7. It indicates that the

processors can communicate through the memory.
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Figure 2.7: Internal structure of the six memory components.

2.1.2 Hierarchy

A system can have physical and/or logical hierarchies which contain physical and logical subsystems, respec-

tively. These hierarchies are different partial views of the same system; therefore, a component of a physical

subsystem may also be a component of a logical subsystem. The difference between a physical and a logical

subsystem is in their ability to be reconfigured and in how their failure affects the system's operation, as

explained in the next two subsubsections. If present, the system hierarchies (a) show what subsystems are

in the initial system configuration and (b) define the composition of the subsystems that may be part of

those hierarchies.

A group of components with their own set of requirements constitutes a subsystem. A subsystem can

also be composed of other subsystems. If a subsystem does not meet its requirements, then none of its

components are able to perform their function.

Redundant subsystems are composed of multiple components with the same function to increase their

reliability. Some of these redundant subsystems may be part of the initial system configuration, while others

serve as alternatives for system reconfiguration (e.g., a quad subsystem that reconfigures into a triad).

A system hierarchy is described by nondirectional tree graphs. Root nodes (identified by a circle)

represent the system or one of its subsystems. Other nodes (identified by a rectangle) represent one or more

identical subsystems or components.
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Figure2.8:Physicalhierarchyof themultiprocessor.

Figure 2.9: Physical hierarchy of tile printed circuit board subsystem type.

2.1.2.1 Physical

Physical subsystems can not be reconfigured, llowever, th[, failure of a physical subsystem does not preclude

the system from operating, as long as the system requirements are met.

Figures 2.8 and 2.9 describe the physical hierarchy of the multiprocessor. Initially, the multiprocessor

contains six printed circuit boards, which belong to the same physical subsystem type. Each board contains

a processor, memory, and a watchdog timer.
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Figure 2.10: Logical hierarchy of the multiprocessor.

2.1.2.2 Logical

Logical subsystems can be reconfigured. Before component failures cause them to fail, they can recover

by replacing the failed components with spares. If there are not enough spares available, the system can

degrade to a lesser number of subsystems or a less redundant subsystem. When a logical subsystem fails,

the system also fails unless it can be reinitialized by a separate subsystem or component.

Figures 2.10 and 2.11 describe the logical hierarchy of the multiprocessor. Initially, the multiprocessor

contains two processor triads, one memory triad, one watchdog triad, one transmit bus triad, one receive

bus triad, and one watchdog bus triad. These triads are each composed of three components of the same

type.

ARM will automatically determine what components are spares by comparing the external structure

with the logical hierarchy; any extra instances of components in the external structure, beyond what is

included in the logical hierarchy, will be assumed to be spare_. Therefore, from Figures 2.6 and 2.10 it will

be assumed that the spare components are: three memories, three watchdog timers, one transmit bus, one

receive bus, and one watchdog bus.

2.1.3 System Reconfiguration

The future system configurations are described in terms of tile reconfigurations allowed. A change in the

system's configuration in response to some event is defined as a reconfiguration. A reconfiguration occurs
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Figure 2.11: Logical hierarchy of tile triad subsystem class.

Restartq) -'t"

Figure 2.12: Reinitialization of the multiprocessor.

when the system is reinitialized because of a logical subsystem failure, or when the system degrades to a

lesser number of subsystems or a less redundant subsystem because there are no spares to replace a failed

component. After a certain time period the mission phase may change causing the system to reconfigure.

Reconfigurations are described by unidirectional graphs. The source nodes are the components and

subsystems (physical or logical) that must be active before the reconfiguration. The destination nodes are

the reinitialized system, or the logical subsystems that will be active after the reconfiguration, in place of

the logical subsystems identificd by the source nodes, l"ach edge is labeled with the name of a specification

that will provide the reconfiguration parameters.

Figure 2.12 describes the reinitialization of the multiprocessor by the watchdog triad. Figure 2.13

describes the degradation of the multiprocessor from two to one processor triad. The working processors in

the deactivated triad are assumed to become spares.
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2.1.4 Requirement

Degrade

Figure 2.13: Degradation of the multiprocessor.

The requirements of a system, subsystem, or performance level are defined as the minimum set of subsystems,

components, and performance levels needed. These levels are used to identify the nondegraded mode and

the various degraded modes of operation a system might have.

These requirements are described by one or more success trees. Root nodes (identified by a circle)

represent the system, one of its subsystems, or a performance level. Other nodes (identified by a rectangle)

represent one or more identical subsystems, a performance level, or one or more identical components. Their

advantages over fault trees are that: (a) they are more intuitive for a computer engineer concerned with

making the system work and not with how it can fail; and (b) a conservative reliability estimate is produced

if some modes of operation are left out of the success tree, because system failure is assumed for those modes

of operation, whereas an optimistic reliability estimate is produced if a failure mode is left out of a fault

tree.

The graphs in Figures 2.14 through 2.16 describe the system and subsystem requirements of the multi-

processor. This mult!processor can operate at one of two performance levels. To achieve full performance

(FP) both processor triads, the watchdog triad, and the memory triad must be operational. The require-

ments for degraded performance (DP) are the same except that only one processor triad is needed. The

components in the printed circuit board can operate as long as the memory on the board has not failed.

2.2 Parameters

The following subsections describe the parameter specification windows. Any time unit may be used for the

parameter values as long as it is the same one for all of them. The OK and CANCEL buttons in each window

save and discard the parameter changes made, respectively. Both buttons snake the window disappear.

Initially, numeric and selection parameters are assigned an appropriate default value. Probabilities
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Figure 2.14: Requirements of the multiprocessor.
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Figure'_AS: Requirement of the printed circuit board subsystem type.

Figure 2.16: Requirements of the triad subsystem class.
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defaultto oneorzerodependingonwhatis mostcommonlyused.Rates,means,andstandarddeviations

defaulttozero.Integerandselectionparametersdefaultto theirmostcommonlyusedvalues.

Insteadof values,numericparameterscanalsobegivenvariableidentifiersthat startwitha letterand

cancontainletters,underscores(_),andnumbers.Oneof thesevariablescanbegivenarangeasdescribed

inSubsection2.2.7.TheSUREprogramwillpromptforthevalueofvariableswithoutarange.

Numericparameterswill beassumedto be independentof thesystemstate.Thisassumptionis not

strictlytrue.However,it isoftencloseenoughinpracticeto beusedto simplifytheanalysis.

2.2.1 Active Component Failure

The active component failure parameters are shown in Figure 2.17 with example values. These are the only

parameters that are always required for each component type, the other parameters are optional. First is

the name of the component type.

Second is the probability (e) a fault in an active component of this type will be a single point of failure

for the system, either immediately or during the recovery process. This is equal to one minus the fault

coverage of an active component of this type.

Third is the probability (0) a fault in an active component of this type will be detected and correctly

isolated. Fourth is the exponential arrival rate ($) of permanent faults. The next two are the exponential

arrival and disappearance rates (r and 6) of transient faults. The last three are the exponential rates (w, 8,

and a) at which intermittent faults arrive, become benign, and become active again.

2.2.2 Spare Component Failure

The spare component failure parameters are shown in Figure 2.18 with example values. First is the name

of the component type.

Second is the failure rates factor used to indicate which type of spare this is. It is: zero for cold, in the

exclusive range of zero to one for warm, and one for hot. This failure rates factor is the spare's fraction of

the active component failure rates.

Third is the probability a fault in a spare component of this type will be a single point of failure for the
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failure

Failure Parameters

Conponent Type:

Single Point Probability: _.000001

Detection Probability: _0.999999

IDterwittent:

Failure Rate: _Re-5

Benign Rate: _e3

Figure 2.17: Active component failure parameters.
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Co_po_ent Type:

Failure Rates Factor: _ I

S_gle Po_t Probability: _.000001

Detectable Fraction: _.9 [

Soft Fault Isolation Probability: _0.2

Detectio_ T_e Distril_tio.:

F.xponential _ General

Rate: _e3 I ]_ean: _e-3 J

Standard Deviation:
_1e-3 J

Figure 2.18: Spare component failure parameters.
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system, either immediately or during the recovery process. This is equal to one minus the fault coverage of

a spare component of this type.

Fourth is the fraction of faults that can be detected in a component of this type while it is a spare. Fifth

is the probability a soft fault can be isolated, before it disappears if it is transient or becomes benign if it is

intermittent, such that the faulty spare component can be reconfigured out of the system.

Soft fault isolation probabilities are assumed to be the same for transients and intermittents. This

assumption is not strictly true. However, it is often close enough in practice to be used to simplify the

analysis.

The sixth parameter indicates whether the detection time, of those faults that can be detected, follows

an exponential or general distribution. The next three parameters are the detection time: rate for an

exponential distribution, and mean and standard deviation for a general distribution.

2.2.3 Component Repair

The component repair parameters are shown in Figure 2.19 with example values. First is the name of the

component type. The second parameter indicates whether the repair time follows an exponential or general

distribution. The next three parameters are the repair time: rate for an exponential distribution, and mean

and standard deviation for a general distribution.

2.2.4 Subsystem Recovery

The recovery parameters are shown in Figure 2.20 with example values. First is the name of the subsystem

type. The second parameter is the probability (p) a soft fault can bc isolated such that the subsystem

can recover. The third parameter indicates whether the recovery time follows an exponential or general

distribution. The next three parameters are the recovery time: rate for an exponential distribution, and

mean (p) and standard deviation (a) for a general distribution.

Figure 2.21 illustrates the meaning of the failure and recovery parameters using a partial Markov model.

Except for states 0 and l, they all have additional transitions to additional states, neither of which are

shown. A transition that follows an exponential time distribution is labeled with a single expression that
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repair

Repair T_e Distribution:

E_ential

Repair Parameters

0 Gemeral

Rate: L20 J He_: I,.Se- 2 ]

Standard Deviation:
_e-2 J

Figure 2.19: Component repair parameters.

recoverv

Recovery Par_eters

Soft Fault Isolatio_ Probability: _0.5

Recovery Ti_e Distribution:

0 F._.nential 0 Oe.eral

Rate: 14e3 I Mean: _2.5e-4 ]
Standard Deviation:

. 5e-4 ]

Figure 2.20: Subsystem recovery parameters.
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2A(1- _)

2(A+ r + _)_

t_, _, pO >

Key: State Description

no faults, n spares

system failed

1 permanent fault, n spares

1 transient fault, n spares

1 active intermittent fault, n spares

1 benign intermittent fault, n spares

1 permanent fault, n - 1 spares

1 transient fault, n - 1 spares

1 active intermittent fault, n - 1 spares

no faults, n - 1 spares

Figure 2.21: Partial Markov model of a processor duplex with n cold spares and no repair.
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repre_nts its rate. A transition that follows a general time distribution is labeled with three expre._qions

that represent the mean, the standard deviation, and the probability this transition will take place.

2.2.5 System Reconfiguration

The system reconfiguration parameters are shown in Figure 2.22 with example values. First is the specifica-

tion name. The second parameter indicates whether this reconfiguration is triggered by a logical subsystem

failure, a mission phase change, or a component in a logical subsystem failing without a spare. Third is the

name of the component type whose failure without a spare will trigger the reconfiguration. Fourth is the

probability a soft fault can be isolated such that the system can be reconfigured. The rest of the parameters

specify the combined time distribution of the reconfiguration and the mission phase change, if any.

2.2.6 Model Generation

The optional window shown in Figure 2.23 with default values allows a user familiar with the ASSIST

program, described in Section 1.2, to select which, if any, state space reduction technique is to be used

in generating the model and to specify any associated parameters. First is the optional ASSIST prune

condition, which is specified as a Boolean expression of the state variables. The second parameter indicates

the optional trimming method to be used. The last two parameters indicate whether the trim rate should

be selected automatically or manually, and the trim rate to be used when it is selected manually.

2.2.7 Model Evaluation

The optional window shown in Figure 2.24 with default values allows a user familiar with the SURE program,

described in Section 1.2, to specify parameters used in the evaluation of the model. First is the mission

time used for calculating the failure probability. Second is the number of times the SURE program will

go around a loop in the model before truncating its traversal. Third is the number of digits of accuracy

required. The SURE program will issue a warning if pruning and truncation result in an upper bound on

the failure probability that does not meet this accuracy requirement.

The next two parameters indicate whether the SURE prune level should be selected automatically or
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Reconfiguration Para_eter_

Specification Name: _Hestart

Triggering Event:

Logical SubsFste_ Failure

0 Nissio_ Phase Change

0 Co_ponent Failing without a Spare

Co_ponent Type: i"

Soft: Fattlt Isolation Probability: _O.S

Heco_fig_ratian Ti_e Distributio_:

Exponential 0 General

Bate: _e3 I ]_ean: [,,2.5e-4

Standard Deviatior :

Figure 2.22: System reconfiguration parameters.
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generate

Model Generation Parameters

ASSIST Prune Condition:

Trinning _et_od:

Conbined _ith any Pruning

0 Separate fran m_F Pruning

0 off

Tr_ Rate Selection:

_to_atic 0

Tri_ Rate: _0 [

Figure 2.23: Model generation parameters.
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evaluate

Model _aluati_ Patterers

_ission Time: _0

Loop Truncation Level:

Digits o_ _a_/Required:

Prune Level Selection:

Aut_atic 0

Level:

Variable N_e:

Figure 2.24: Model evaluation parameters.
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manually, and the prune level to be used when it is selected manually. ASSIST pruning affects which states

are generated, whereas SURE pruning affects which of the generated states are evaluated. If no SURE

pruning is desired, the SURE prune level selection should be manual and the prune level should be left at

its default value of zero.

The last two parameters are optional. They are used when the failure probability is to be calculated as

a function of a previously defined variable. In that case, the name of the variable must be given along with

its range. The range can be specified as:

! to h add i

where i and h are the low and high ends of the range and i is the increment added to vary the variable's

value over that range. The range can also be specified as:

I to h by f

where f is the multiplication factor used to vary the yariable's value over the range.
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Chapter 3

Example

The FTMP is composed of 10 line replaceable units (LRUs) and five buses that connect them. Each LRU

contains a processor (p), memory (m), clock (c), input/output port (to), and power supply (ps). Each bus

has five lines. A transmit bus (tb) line is used for a processor to transmit to a memory or input/output

port. A receive bus (rb) line is used for a processor to receive from a memory or input/output port.. The

processors and clocks communicate with components of their own type by using the poll bus (pb) and clock

bus (cb), respectively.

The components of the 10 LRUs are initially configured into three processor triads, two memory triads,

and one clock quad to provide full performance. The clock bus is initially configured as a quad but degrades

to a triad if two bus lines fail. If the clock bus degrades to a triad, the clock quad is also degraded to a

triad. Tile other buses are configured as triads from tile start.

The system requires two processor triads, two memory triads, and one clock quad or triad to provide

degraded performance. Each triad requires that two of its components be working for it to be operational.

Each quad requires that three of its components be working for it to be operational. Each LRU requires

that its memory, clock, input/output port, and power supply be working for it to be operational. If two

components in a triad or quad fail before one can be replaced by a spare, the system will crash.

When a component in a triad or quad fails it is replaced by a spare if available. Otherwise, quads degrade

into triads. If there are three processor triads, they degrade into two triads.
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Figure 3.1: External structure of the FTMP.

The architecture and requirements of the FTMP are described by Figures 3.1 through 3.10. The logical

hierarchy and requirements of the triad subsystem class are not shown since they are the same as those

shown in Figures 2.11 and 2.16, respectively. The parameters of the FTMP are not shown since they would

be specified using the same windows as those shown in Section 2.2.
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Figure3.2:Physicalhierarchyof theFTMP.

L L J
Figure 3.3: Physical hierarchy of the LRU subsystem type.
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Figure 3.4: Logical hierarchy of the FTMP.

Figure 3.5: Logical hierarchy of the quad subsystem class.
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Figure 3.6: Degradation to less processor triads.
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Figure 3.7: Degradation to less clock redundancy.
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Figure 3.8: Requirements of the FTMP.
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Figure 3.9: Requirements of the LRU subsystem type.

Figure 3.10: Requirements of tile quad subsystem class.
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Chapter 4

Conclusions

This paper has presented a general graphical user interface (GUI) for automatic reliability modeling of

processor-memory-switch structures using a Markov model. This GUI is based on a hierarchy of windows.

One window has graphical editing capabilities for specifying the system's communication structure, hier-

t

archy, reconfigurations, and requirements. Other windows have text fields, pop-up menus, and buttons

for specifying parameters and selecting actions. The application of the GUI was exemplified using the

Fault-Tolerant Multiprocessor described in [LS83].

This GUI is to become the first of four steps in an automated reliability modeling process using a

Markov model. The second step, which we are implementing in the ARM program, will be automating the

specification of the model using the ASSIST language. The last two steps, automating the generation and

evaluation of the model, have already been implemented in the ASSIST and SURE programs.

Since the GUI is not specific to these programs, it could also be used as the front-end for other reliability

analysis programs. The advantages of the GUI approach are (a) utility to a larger class of users, not

necessarily expcrt in reliability analysis, and (b) a lower probability of human error in the computation.
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